This is what I am going after:
designed by Robert Michelson
BTW, check this guy web site,
http://avdil.gtri.gatech.edu/RCM/RCM/MICHELSONAquarium.html A Carlson surge device provides an intermittent flow of moderate duration (a function of the surge device reservoir volume) and adjustable surge frequency (a function of the reservoir fill rate). The surge produced is fairly realistic in that it creates a constant mass flow during the surge, and can be timed to provide surges of duration similar to those encountered on the wild reef. The surge device has no moving parts and does not require cycling of a pump. The surge device relies on the creation of a siphon to automatically drain a reservoir at a flow rate several times greater than its constant fill rate. As the pump draws water from the show tank (or other source within the closed circulation system), it is pumped into a reservoir that is physically above the show tank water line. A siphon tube extends from the bottom inside of the reservoir, up through the side of the reservoir (at a point about 95 percent up the height of the reservoir), down the outside of the reservoir, and into the show tank. The external end of the siphon must extend down into the water of the show tank in order to provide a slight back pressure which helps the siphon to start automatically. When the reservoir fills to the top of the siphon, the inner half of the siphon tube will also be full. As the pump continues to raise the water level in the reservoir above the upper bend in the siphon tube, water will begin to spill over the bend in the tube and flow down into the show tank. This will create a siphon action that rapidly drains the reservoir into the show tank.
Several parameters are critical to the correct operation of the surge device. First, the siphon tube must be of sufficient diameter to allow the reservoir to drain faster than it can be filled by the pump-- otherwise the flow would simply be continuous and equivalent to that of the pump, or on the other hand, if the pumped flow is greater than the siphon flow, the reservoir will overflow.
The siphon tube must extend to the bottom of the inside of the reservoir otherwise the reservoir will never completely drain. Also, the siphon output must extend below the show tank water surface for the siphon to start automatically. Finally, as mentioned above, the reservoir must be physically higher than the show tank water level for the siphon to work.
Adjusting the flow rate into the reservoir is easily accomplished with a valve to restrict the flow. In the event that the siphon were to become clogged, the reservoir would overflow, so the reservoir should be a closed container that is airtight except for a vent hole at the top. Were the reservoir to overflow, the water would go out the vent at the top where it can be channeled harmlessly back into the aquarium by means of an overflow tube. During normal operation, this vent and overflow tube allow air to escape from the closed reservoir chamber as air is displaced by the incoming water. The vent also prevents a vacuum from occurring during the rapid outflow when the siphon is active. The overflow tube must be placed just above the surface of the show tank water and not allowed to extend beneath the surface. Otherwise, as the reservoir fills, air expelled through the vent would bubble out the end of the overflow tube. This would be noisy and not very attractive. Also during the siphoning of the water in the reservoir, water would either be sucked back into the reservoir through the overflow vent, or more likely, the operation of the siphon would be inhibited.
A point of major concern in the design of the surge device was noise mitigation. By making the reservoir totally airtight except for the pump input, siphon output, and the overflow vent, filling and siphoning noises are contained. The bottom of the siphon tube inside the reservoir is cut at a 2 degree angle relative to the flat reservoir bottom to allow the siphon to “break” quickly without excessive gurgling. The pump fills the reservoir from the bottom to prevent the splashing that would occur were the water to fall in from the top. Finally, noise is abated by placing the reservoir on a foam pad to isolate internal sounds from being transmitted through the base into its supporting structure. As a result, these surge devices are silent.